STEREOCONTROLLED APPROACHES TO 9(0)-METHANOPROSTACYCLIN1)

Akihiko Sugie, Hiromi Shimomura, Junki Katsube* and Hisao Yamamoto

Institute for Biological Science, Pharmaceuticals Division, Sumitomo Chemical
Co., Ltd, Takatsukasa, Hyogo, Japan

Summary: A stable PGI_2 analog (methanoprostacyclin 2) was synthesized starting from 5-norbornene-2,3-dicarboxylic anhydride.

Since the discovery of prostacyclin (PGI₂, $\underline{1}$), much attention has been paid to its possible medicinal potential as well as its important physiological roles. In addition, its remarkable instability has urged a number of chemists to synthesize more stable analogs with similar biological activity. Thus, in recent time, not a few synthetic modified analogs have been reported²⁾.

We also intended to synthesize 9(0)-methanoprostacyclin $\underline{2}$ replacing the ether linkage of the cyclic enol ether of $\underline{1}$ by a methylene moiety. The recent communications³⁾ on the synthesis of $\underline{2}$ have prompted us to report our different approaches to the same target $\underline{2}$. As an extension of our works¹⁾ on PG-synthesis utilizing the norbornene adduct obtained via the Diels Alder reaction, we started, this time, with 5-norbornen-2,3-dicarboxylic anhydride as a control

element for the synthesis of
$$\underline{2}$$
. CO_2H $\underline{1}$ HO OH $\underline{1}$ OH

Lactone 3, prepared from the above carboxylic anhydride (hot H_2SO_4/H_2O), was reduced with diborane in THF (0°, 2hr), mesylated (MsCl-pyridine), and treated with NaCN in DMSO gave $\underline{4}$ in 76% overall yield. ir; 2250, 1780. Reduction of $\underline{4}$ with lithium borohydride in diglyme yielded the diol, which was treated with 1.1 eq. of benzoyl chloride and pyridine (-20°), and oxidation with Jones reagent

2608 No. 28

 (H_2CrO_4) of the resulting monobenzoate gave the ketone $\underline{5}$ in 51% yield from $\underline{4}$ (mp. $119-121.5^{\circ}C$, ir; 2250, 1740, 1720). Baeyer-Villiger oxidation of $\underline{5}$ with 40% CH_3CO_3H (25°, 24hr) afforded a major lactone $\underline{6}$ (mp. $133.5-135^{\circ}C$) along with a minor regioisomer $\underline{7}$ in a ratio of ca 4:1. Methanolysis of $\underline{6}$ (H_2SO_4 in MeOH), followed by successive treatment with dihydropyran and p-toluenesulfonic acid in CH_2Cl_2 and debenzoylation (K_2CO_3 in MeOH) gave the alcohol 8.

Oxidation of 8 with pyridinium chlorochromate (PCC) in CH₂Cl₂ provided the cis aldehyde 9, which epimerized spontaneously to the trans aldehyde 10. This aldehyde 10 was immediately condensed with the sodium salt of dimethyl 2-oxoheptyl phosphonate in THF to afford the enone 11 accompanied by the dienone 12 [11: nmr; 6.76(1H,q), 6.21(1H,m), 12: nmr; 7.17(1H,d), 6.35(1H,m), 5.97(1H,d)].

Some hardships encountered in the above course of reactions (low regionslectivity in the Baeyer-Villiger oxidation on $\underline{7}$ and dehydration occurred in the epimerization of $\underline{9}$) could be avoided by employing the trans benzoate $\underline{16}$ in stead of the cis one 5.

Acetalization of $\underline{5}$ (ethylene glycol and p-toluenesulfonic acid) and debenzo-ylation (K_2CO_3 in MeOH) gave the alcohol $\underline{13}$. Collins oxidation of $\underline{13}$ with (CrO_3-2 pyridine) provided the endo-aldehyde $\underline{14}$, (nmr δ ; 9.55) which was converted to the exo-aldehyde $\underline{15}$ (nmr δ ; 9.55) by treatment with piperidine and acetic acid in benzene at reflux 2.5hr. Reduction of $\underline{15}$ with NaBH₄, benzoylation (PhCOCl/pyridine) and deacetalization in aqueous acetic acid yielded the objective 16 (35% from 5, mp. 112-113°C, ir; 2250, 1750, 1720).

Baeyer-Villiger oxidation of $\underline{16}$ under milder condition (30% $\mathrm{H}_2\mathrm{O}_2$ in acetic acid) gave regioselectively the lactone 17 (mp. 91-93°C).

According to the same procedures in the cis alcohol $\underline{8}$, the lactone $\underline{17}$ was transformed to the trans alcohol $\underline{18}$. Oxidation of $\underline{18}$ with PCC, followed by condensation with the sodium salt of dimethyl 2-oxo-heptyl phosphonate gave the same enone $\underline{11}$ as obtained from $\underline{8}$.

As a more effective route, the exo-aldehyde $\underline{15}$ could be directly converted to the enone $\underline{19}$ [ir; 1700, 1670, 1620, nmr; 6.6(1H,d,d), 6.0(1H,d)].

The enone 19 was reduced with NaBH, and hydrolyzed with aqueous acetic acid

3: CO₂H 4: CH₂CN

 R_1 R_2 5: CH₂OCOPh Н

CH2OCOPh

Н

16:

 R_1

6: CH₂OCOPh 17:

Н CH₂OCOPh

R₂

Н

CH≃CHCHC 5H 1 1 OH CH=CHCHC₅H₁₁ 21: 20: Н Н

$$R_{10} \xrightarrow{R_{2}} R_{3}$$

 R_1 R₃ 8: THP CH₂OH H

9: THP CHO Н

10: THP CHO

11: THP CH=CHCOC 5 H 1 1 Н

18: THP CH₂OH Н

CH=CHCH (OH) C5H11 22: Н Н

CH=CHCHC 5H11 OTHP 23: THP Н

R₂ R_1 13: CH₂OH Н 14: CHO H

15: CHO Н

CH=CHCOC 5 H 1 1 19:

12

$$\underset{\mathbb{R}_{2}}{\overset{\circ}{\bigcap}} \underset{\mathbb{R}_{2}}{\overset{\circ}{\bigcap}} \underset{\mathbb{R}_{2}}{\overset{\circ}{\bigcap}} \underset{\mathbb{R}_{3}}{\overset{\circ}{\bigcap}} \underset{\mathbb{R}_{2}}{\overset{\circ}{\bigcap}} \underset{\mathbb{R}_{2}}{\overset{\mathbb{$$

25: Н ОН Н 26: Н ОН 27: THP OTHP Н

OTHP

24

to the alcohol $\underline{20}$, which was oxidized with 30% $\mathrm{H_2O_2}$ and NaOAc in AcOH to give the regiospecific lactone $\underline{21}$ (65% from $\underline{19}$). Methanolysis of $\underline{21}$ with anhydrous potassium carbonate in MeOH gave the diol $\underline{22}$, which was treated with dihydropyran and p-toluenesulfonic acid in $\mathrm{CH_2Cl_2}$ to the bis-THP ether $\underline{23}$. This ether $\underline{23}$ was coincided with the bis-THP ether derived from the enone $\underline{11}$ by successive reduction and tetrahydropyranylation. Hydrolysis of the nitrile $\underline{23}$ with potassium hydroxide in aqueous ethanol and esterification with diazomethane gave the diester $\underline{24}$ (67% yield from $\underline{23}$).

Dieckmann condensation of $\underline{24}$ (potassium t-butoxide in THF) provided a mixture of β -keto ester, which was subjected to demethoxycarbonylation with lithium iodide in pyridine and deprotection with aqueous acetic acid to give the key diol $\underline{25}$ and its epimer $\underline{26}$ in almost equal amount after separation by column chromatography on silica gel [41% yield from $\underline{24}$. Rf $0.12(\underline{25})$, $0.20(\underline{26})$, silica gel, AcOEt]. The diol $\underline{25}$ was converted to its bis-THP ether $\underline{27}$, which was reacted with the standard Wittig reagent [Ph₃P=CH(CH₂)₃COONa, in DMSO].

Deprotection of the resultant carboxylic acid with aqueous acetic acid (45°C, 2hr) led to the objective $\underline{2}$ and its C_5 Z isomer $\underline{28}$ (in a ratio; $\underline{2:28}$, 1:0.3) after separation of prep. TLC [Rf 0.13($\underline{2}$), 0.17($\underline{28}$), silica gel, CHCl₃: MeOH (10:1)].

References and Notes

- Synthetic Studies on Cyclopentane Derivatives. Part X. Preceding paper:
 H. Shimomura, J. Katsube and M. Matsui, Agric. Biol, Chem., 42, 131 (1978).
- 2) For a recent review see: K. C. Nicolaou, G. P. Gasic and W. E. Barnette, Angew. Chem. Int. Ed. Engl. 17., 293 (1978).
- 3) a) K. Kojima and K. Sakai, Tetrahedron Letters., 3734 (1978).
 - b) K. C. Nicolaou, W. J. Sipio, R. L. Magolda, S. Seitz, and W. E. Barnette, J. Chem. Soc. Chem. Commun., 1978. 1067.
 - c) M. Shibasaki, J. Ueda, and S. Ikegami, Tetrahedron Letters., 433 (1979).

(Received in Japan 7 April 1979)